

Material Data Sheet Porous Ceramics

Mantec Filtration, a division of Mantec Technical Ceramics Ltd, has over a quarter of a century of manufacturing experience and is an acknowledged leader in the field of industrial porous ceramics.

Mantec has a range of standard ceramic materials, each having its own unique characteristics and capabilities. The materials are **CORALITH**, **PYROLITH**, **MICROLITH** and **CELLOTON**. This data sheet details the main physical properties for each.

CORALITH

Grade	Filtration Nominal (microns)		Pore Diameter (microns)		Porosity	Permeability	Strength
	Air/Gas	Liquid	Average	Maximum	(%)	(Darcies)	(мра)
C0	0.3	1	16	20	35 - 45	0.5 - 1.2	25.5
C9	1	2	20	25	35 - 45	1.8 - 3.4 3.7 - 6.7	23.5
C8	3	6	30	35	35 - 45		20.5
C6	10	20	50	70	35 - 45	16.6 - 31.0	15.5
C5	20	40	90	110	35 - 45	38.4 - 71.1	12.0
C5B	20	40	90	110	45 - 55	38.4 - 71.1	8.0
C4	30	60	155	200	35 - 45	119 - 223	10.0
C3	50	150	300	400	35 - 45	227 - 423	7.5
C2	100	230	525	650	35 - 45	373 - 693	5.0

Aluminosilicate particles bonded by glass. Coralith can withstand hot and cold acids (not hydrofluoric acid or acid fluorides), alkaline solutions up to pH9 and hot gases up to 900° C.

Chemical Composition

 SiO2
 10%

 Al2O3
 85%

 Trace Elements
 10%

Average Coefficient of Thermal Expansion for Coralith is 5 x 10^{-6} Average Bulk Density for Coralith Is 2.0 g/cm³

PYROLITH

Aluminosilicate particles bonded by glass. Pyrolith can withstand hot and cold acids (not hydrofluoric acid or acid fluorides), alkaline solutions up to pH9 and hot gases up to 900° C.

Chemical Composition

SiO ₂	57%
Al ₂ O ₃	36%
Trace Elements	

Average Coefficient of Thermal Expansion for Pyrolith is 7 x 10^{-6} Average Bulk Density for Pyrolith Is 1.5 g/cm³

Grade	Filtration Nominal (microns)		Pore Diameter (microns)		Porosity	Permeability	Strength
	Air/Gas	Liquid	Average	Maximum	(%)	(Darcies)	(wpa)
P9	1	2	20	25	35 - 45	1.8 - 3.4	15.0
P8	3	6	30	35	35 - 45	3.7 - 6.7	10.5
P6	10	20	50	70	35 - 45	16.6 - 31.0	8.0
P5	20	40	90	110	35 - 45	38.4 - 71.1	6.5
P4	30	60	155	200	35 - 45	119 - 223	6.5
P3	50	150	300	400	35 - 45	227 - 423	5.0
P2	100	230	525	650	35 - 45	373 - 693	3.5

MICROLITH

Porous Siliceous Porcelain. Microlith's extremely fine pore structure can be utilised for various applications, such as controlled impregnant release and bleed valves in gas analysers.

SiO ₂	68%
Al ₂ O ₃	24%
Trace Elements	

Chemical Composition

37%

60%

SiO₂

Al₂O₃

Trace Elements

Chemical Composition

Grade	Average Pore	Porosity	Flexural Strength	Bulk Density	
	Size (micron)	(%)	(Mpa)	(g/cm³)	
B9L	0.35	30 - 40	14.3	1.78	

CELLOTON

Porcelain Mullite. Reaction bonded micro porous mullite media. Designed for resistance to acids and alkalis at high temperature. Suitable for us as a permeable membrane in soil science or geology studies.

Thermal Flexural Porosity **Bulk Density** Max. Pore Air Entry Grade Strength **Coefficient of** Size (micron) Value (bar) (%) (g/cm³) (Mpa) Expansion 35 - 45 V1 2 1 34.0 6x10-6 1.7 3 1 V3 35 - 45 28.0 6x10-6 1.7

NB: The chemical resistance for ceramic media is dependent on the 'in-situ' conditions and should be checked for each application. The material data sheet has been compiled as a guide to material selection and in some cases is the 'average' for any one grade or physical size / dimension.

